ERAPOL EMD135 CATALYST A # **Era Polymers Corporation** Version No: 2.2.13.10 Safety Data Sheet according to OSHA HazCom Standard (2012) requirements Chemwatch Hazard Alert Code: 2 Issue Date: 10/09/2018 Print Date: 15/09/2021 S.GHS.USA.EN #### **SECTION 1 Identification** #### Product Identifier | Floudet identifier | | | |--------------------|--------------------------|--| | Product name | ERAPOL EMD135 CATALYST A | | | Chemical Name | Not Applicable | | | Synonyms | Not Available | | #### Recommended use of the chemical and restrictions on use #### Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party | Registered company name | Era Polymers Corporation | Era Polymers | |-------------------------|---|---| | Address | 1101 Highway 27 South, Stanley NC 28164 United States | 2-4 Green Street Banksmeadow NSW 2019 Australia | | Telephone | +1 (704) 931 3675 | +61 2 9666 3788 | | Fax | Not Available | +61 2 9666 4805 | | Website | www.erapolymersusa.com | www.erapol.com.au | | Email | info@erapolymersusa.com | Not Available | #### Emergency phone number | Association | / Organisation | CHEMWATCH EMERGENCY RESPONSE | |--------------|---------------------------|------------------------------| | Emerge | ency telephone numbers | +61 2 9186 1132 | | Other emerge | ency telephone
numbers | +1 855-237-5573 | Once connected and if the message is not in your prefered language then please dial 01 Una vez conectado y si el mensaje no está en su idioma preferido, por favor marque 02 ### SECTION 2 Hazard(s) identification #### Classification of the substance or mixture #### ChemWatch Hazard Ratings | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 0 | | | | Toxicity | 1 | | 0 = Minimum | | Body Contact | 2 | - 1 | 1 = Low | | Reactivity | 0 | | 2 = Moderate | | Chronic | 2 | i | 3 = High
4 = Extreme | Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Reproductive Toxicity Category 2 #### Label elements Hazard pictogram(s) Signal word Warning Version No: **2.2.13.10** Page **2** of **11** Issue Date: **10/09/2018** #### **ERAPOL EMD135 CATALYST A** Print Date: 15/09/2021 #### Hazard statement(s) H361 Suspected of damaging fertility or the unborn child. #### Hazard(s) not otherwise classified Not Applicable #### Precautionary statement(s) General | P101 | If medical advice is needed, have product container or label at hand. | |------|---| | P102 | Keep out of reach of children. | | P103 | Read label before use. | #### Precautionary statement(s) Prevention | P201 | Obtain special instructions before use. | |------|---| | P280 | Wear protective gloves and protective clothing. | | P202 | Do not handle until all safety precautions have been read and understood. | #### Precautionary statement(s) Response P308+P313 IF exposed or concerned: Get medical advice/ attention. #### Precautionary statement(s) Storage P405 Store locked up. #### Precautionary statement(s) Disposal Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|--------------------------------------| | 25265-71-8 | 40-60 | dipropylene glycol | | 149-57-5 | <3 | 2-ethylhexanoic acid | | Not Available | to 100 | All other substances - non-hazardous | The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. #### **SECTION 4 First-aid measures** # Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. | | Ingestion | If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. | #### Most important symptoms and effects, both acute and delayed See Section 11 #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. Version No: 2.2.13.10 Issue Date: 10/09/2018 Page 3 of 11 #### **ERAPOL EMD135 CATALYST A** Print Date: 15/09/2021 - ▶ Polyethylene glycols are generally poorly absorbed orally and are mostly unchanged by the kidney. - Dermal absorption can occur across damaged skin (e.g. through burns) leading to increased osmolality, anion gap metabolic acidosis, elevated calcium, low ionised calcium, CNS depression and renal failure. - Treatment consists of supportive care. [Ellenhorn and Barceloux: Medical Toxicology] #### **SECTION 5 Fire-fighting measures** #### **Extinguishing media** - Alcohol stable foam. - Dry chemical powder. - ► BCF (where regulations permit). - Carbon dioxide. - Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Special protective equipment and precautions for fire-fighters # Fire Fighting - ▶ Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. - ▶ DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. # Fire/Explosion Hazard - Combustible. - Slight fire hazard when exposed to heat or flame. - Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO) - May emit acrid smoke. - ▶ Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) other pyrolysis products typical of burning organic material. May emit poisonous fumes May emit corrosive fumes #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up # **Minor Spills** - Remove all ignition sources. - ► Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. - ▶ Contain and absorb spill with sand, earth, inert material or vermiculite - Wipe up. - Place in a suitable, labelled container for waste disposal. ## Moderate hazard. - ▶ Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. #### **Major Spills** - Increase ventilation. Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite. - Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. # **SECTION 7 Handling and storage** Version No: **2.2.13.10** Page **4** of **11** Issue Date: **10/09/2018** #### **ERAPOL EMD135 CATALYST A** Print Date: 15/09/2021 #### Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ DO NOT allow clothing wet with material to stay in contact with skin - Store in original containers. - Keep containers securely sealed.No smoking, naked lights or ignition sources. - Other information Safe handling - Store in a cool, dry, well-ventilated area. - ▶ Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities #### Suitable container - Metal can or drum - Packaging as recommended by manufacturer. - ► Check all containers are clearly labelled and free from leaks. #### Dipropylene glycol: - is incompatible with sulfuric acid, perchloric acid, isocyanates and strong oxidisers. - Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water. #### Storage incompatibility #### Alcohols TEEL-1 - are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents. - reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen - react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium - ▶ should not be heated above 49 deg. C. when in contact with aluminium equipment #### **SECTION 8 Exposure controls / personal protection** #### Control parameters #### Occupational Exposure Limits (OEL) #### INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------------------------------|----------------------|---|---------|---------------|---------------|---------------| | US ACGIH Threshold Limit Values (TLV) | 2-ethylhexanoic acid | 2-Ethylhexanoic acid (Inhalable fraction and vapor) | 5 mg/m3 | Not Available | Not Available | Not Available | #### **Emergency Limits** | 1666 | ILLE-Z | | TELEV | |---------------|--|---|--| | 15 mg/m3 | 99 mg/m3 | | 590 mg/m3 | | | | | | | Original IDLH | | Revised IDLH | | | Not Available | | Not Available | | | Not Available | | Not Available | | | | 15 mg/m3 Original IDLH Not Available | 15 mg/m3 99 mg/m3 Original IDLH Not Available | 15 mg/m3 99 mg/m3 Original IDLH Revised IDLH Not Available Not Available | #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. # Appropriate engineering controls General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant. | | l | |----------------------|------------| | Type of Contaminant: | Air Speed: | Version No: 2.2.13.10 Page 5 of 11 Issue Date: 10/09/2018 #### **ERAPOL EMD135 CATALYST A** Print Date: 15/09/2021 | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s
(50-100 f/min) | | |---|---------------------------------|--| | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted. accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection # Eve and face protection - Safety glasses with side shields. - Chemical goggles - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eve irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eve redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection Hands/feet protection #### See Hand protection below - Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact. - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - Excellent when breakthrough time > 480 min - Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ▶ Neoprene gloves Version No: **2.2.13.10** Page **6** of **11** Issue Date: **10/09/2018** #### **ERAPOL EMD135 CATALYST A** Print Date: 15/09/2021 | Body protection | See Other protection below | |------------------|--| | Other protection | Overalls. P.V.C apron. Barrier cream. Skin cleansing cream. Eye wash unit. | #### Recommended material(s) #### GLOVE SELECTION INDEX Glove selection is based on a modified presentation of the: #### Forsberg Clothing Performance Index'. The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: ERAPOL EMD135 CATALYST A | Material | СРІ | |----------|-----| | NEOPRENE | A | | NITRILE | A | | PVC | A | - * CPI Chemwatch Performance Index - A: Best Selection - B: Satisfactory; may degrade after 4 hours continuous immersion - C: Poor to Dangerous Choice for other than short term immersion **NOTE**: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. #### Respiratory protection - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### **SECTION 9 Physical and chemical properties** ## Information on basic physical and chemical properties | Appearance | Amber liquid | | | |--|------------------------|----------------------------------|---------------| | Physical state | Liquid | Relative density (Water = 1) | 1.04 | | · | • | Partition coefficient n-octanol | | | Odour | Not Available | / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | 164 | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 110 | Taste | Not Available | | Evaporation rate | Not Available BuAC = 1 | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Not Available | pH as a solution (%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | Version No: **2.2.13.10** Page **7** of **11** Issue Date: **10/09/2018** #### **ERAPOL EMD135 CATALYST A** Print Date: 15/09/2021 | Conditions to avoid | See section 7 | |----------------------------------|---------------| | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | #### **SECTION 11 Toxicological information** | Information | on | toxicological | effects | |-------------|----|---------------|---------| | | | | | # Inhaled The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Aliphatic alcohols with more than 3-carbons cause headache, dizziness, drowsiness, muscle weakness and delirium, central depression, coma, seizures and behavioural changes. Secondary respiratory depression and failure, as well as low blood pressure and irregular heart rhythms, may follow. # Ingestion Accidental ingestion of the material may be damaging to the health of the individual. If swallowed, the toxic effects of glycols (dihydric alcohols) are similar to those of alcohol, with depression of the central nervous system, nausea, vomiting, and degenerative changes in the liver and kidney. Overexposure to non-ring alcohols causes nervous system symptoms. These include headache, muscle weakness and inco-ordination, giddiness, confusion, delirium and coma. ## Skin Contact Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons. Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Eye This material can cause eye irritation and damage in some persons. #### Chronic Ample evidence from experiments exists that there is a suspicion this material directly reduces fertility. Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother. # ERAPOL EMD135 CATALYST | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | ### dipropylene glycol | TOXICITY | IRRITATION | |---|--------------------------------| | Dermal (rabbit) LD50: >5010 mg/kg ^[1] | Eye (rabbit): 510 mg | | Inhalation(Rat) LC50; >2.34 mg/l4h ^[1] | Skin (rabbit): 500 mg/24h mild | | Oral(Rat) LD50; >5000 mg/kg ^[1] | | # 2-ethylhexanoic acid | TOXICITY | IRRITATION | |---|---------------------------------| | dermal (rat) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 4.5 mg SEVERE | | Oral(Rat) LD50; 2043 mg/kg ^[2] | Skin (rabbit): 10 mg/24h mild | | | Skin (rabbit): 450 mg open mild | #### Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. # 2-ETHYLHEXANOIC ACID Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. #### ERAPOL EMD135 CATALYST A & DIPROPYLENE GLYCOL For dipropylene glycol (DPG) and its isomers: Acute toxicity: Animal testing shows dipropylene glycol is not acutely toxic by mouth, skin contact or inhalation. DPG is slightly irritating to the skin and eyes of rabbits. Based on human data, DPG does not cause skin sensitization. Repeat dose toxicity: Animal testing shows DPG did not cause adverse effects on repeated exposure at low doses. Higher doses may cause kidney damage. Reproductive and developmental toxicity: Animal testing has not shown DPG to cause foetal toxicity or birth defects, at levels which did not cause Version No: 2.2.13.10 Page 8 of 11 Issue Date: 10/09/2018 #### **ERAPOL EMD135 CATALYST A** Print Date: 15/09/2021 toxicity to the mother. Genetic toxicity: Studies show that DPG does not cause genetic toxicity. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | × | Reproductivity | ✓ | | Serious Eye Damage/Irritation | × | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: X − Data either not available or does not fill the criteria for classification ✓ − Data available to make classification #### **SECTION 12 Ecological information** | city | | | | | | | | |------------------------|-----------------------------|---|-------------------------------------|-----------------------------|----------|---------------|--| | ERAPOL EMD135 CATALYST | Endpoint Test Duration (hr) | | Species | Value | Sour | Source | | | А | Not Available | Not Available | Not Available | Not Available Not Available | | Not Available | | | dipropylene glycol | Endpoint | Test Duration (hr) | est Duration (hr) Species | | Value | Source | | | | EC50 | 72h | Algae or other aquatic p | lants | >100mg/l | 2 | | | | EC50 | 48h | Crustacea | | >100mg/l | 2 | | | | LC50 | 96h | Fish | Fish | | 2 | | | | EC50(ECx) | 72h | Algae or other aquatic plants | | >100mg/l | 2 | | | | EC50 | 96h | Algae or other aquatic plants | | 968mg/l | 2 | | | | | | | | | | | | | Endpoint | Test Duration (hr) | Species | | Value | Source | | | | EC50 | 72h | Algae or other aquatic plants | | 49.3mg/l | 2 | | | 2-ethylhexanoic acid | EC50 | 48h | Crustacea | | 85.4mg/l | 1 | | | 2-ethylnexanoic acid | LC50 | 96h | Fish | | >100mg/l | 2 | | | | NOEC(ECx) | 504h | Crustacea | | 18mg/l | 2 | | | | EC50 | 96h | 96h Algae or other aquatic plants 4 | | | 1 | | | Legend: | V3.12 (QSAR) - Aq | UCLID Toxicity Data 2. Europe I
Juatic Toxicity Data (Estimated)
In) - Bioconcentration Data 7. M | 4. US EPA, Ecotox database - A | Aquatic Toxicity Data 5. | | | | ## DO NOT discharge into sewer or waterways. ### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |----------------------|-------------------------|------------------| | dipropylene glycol | LOW | LOW | | 2-ethylhexanoic acid | LOW | LOW | #### **Bioaccumulative potential** | Ingredient | Bioaccumulation | |----------------------|---------------------| | dipropylene glycol | LOW (BCF = 4.6) | | 2-ethylhexanoic acid | LOW (LogKOW = 2.64) | ## Mobility in soil | Ingredient | Mobility | |----------------------|-------------------| | dipropylene glycol | HIGH (KOC = 1) | | 2-ethylhexanoic acid | LOW (KOC = 24.06) | #### **SECTION 13 Disposal considerations** #### Waste treatment methods Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. # Product / Packaging disposal - A Hierarchy of Controls seems to be common the user should investigate: Reduction ► Reuse - ► Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been Version No: 2.2.13.10 Page **9** of **11** Issue Date: 10/09/2018 #### **ERAPOL EMD135 CATALYST A** Print Date: 15/09/2021 contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - ▶ Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. Bury or incinerate residue at an approved site. - Recycle containers if possible, or dispose of in an authorised landfill. #### **SECTION 14 Transport information** #### Labels Required Marine Pollutant NO Land transport (DOT): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------------------------------|---------------| | dipropylene glycol | Not Available | | 2-ethylhexanoic acid | Not Available | | All other substances - non-hazardous | Not Available | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |--------------------------------------|---------------| | dipropylene glycol | Not Available | | 2-ethylhexanoic acid | Not Available | | All other substances - non-hazardous | Not Available | #### **SECTION 15 Regulatory information** ## Safety, health and environmental regulations / legislation specific for the substance or mixture #### dipropylene glycol is found on the following regulatory lists US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US TSCA Chemical Substance Inventory - Interim List of Active Substances #### 2-ethylhexanoic acid is found on the following regulatory lists US ACGIH Threshold Limit Values (TLV) US DOE Temporary Emergency Exposure Limits (TEELs) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US TSCA Chemical Substance Inventory - Interim List of Active Substances US TSCA Section 4/12 (b) - Sunset Dates/Status #### **Federal Regulations** #### Superfund Amendments and Reauthorization Act of 1986 (SARA) #### Section 311/312 hazard categories | Coction of 17012 hazard categories | | |---|-----| | Flammable (Gases, Aerosols, Liquids, or Solids) | No | | Gas under pressure | No | | Explosive | No | | Self-heating | No | | Pyrophoric (Liquid or Solid) | No | | Pyrophoric Gas | No | | Corrosive to metal | No | | Oxidizer (Liquid, Solid or Gas) | No | | Organic Peroxide | No | | Self-reactive | No | | In contact with water emits flammable gas | No | | Combustible Dust | No | | Carcinogenicity | No | | Acute toxicity (any route of exposure) | No | | Reproductive toxicity | Yes | Version No: **2.2.13.10** Page **10** of **11** Issue Date: **10/09/2018** #### **ERAPOL EMD135 CATALYST A** Print Date: 15/09/2021 | Skin Corrosion or Irritation | No | |--|----| | Respiratory or Skin Sensitization | No | | Serious eye damage or eye irritation | No | | Specific target organ toxicity (single or repeated exposure) | No | | Aspiration Hazard | No | | Germ cell mutagenicity | No | | Simple Asphyxiant | No | | Hazards Not Otherwise Classified | No | #### US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4) None Reported #### **State Regulations** #### US. California Proposition 65 None Reported #### **National Inventory Status** | ivational inventory status | | |--|--| | National Inventory | Status | | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | #### **SECTION 16 Other information** | Revision Date | 10/09/2018 | |---------------|------------| | Initial Date | 14/02/2017 | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory Version No: 2.2.13.10 Page 11 of 11 Issue Date: 10/09/2018 #### **ERAPOL EMD135 CATALYST A** Print Date: 15/09/2021 NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances Powered by AuthorITe, from Chemwatch.